
By Isaac Revette

The Value of Transfer Learning Part I: Using Tweets to Compare SVM and Pre-Trained BERT Classi�ers

The purpose of this is to highlight the power of transfer learning to help avoid the cold start problem when using deep learning models.
I will be using the State-of-the-art BERT Model released by Google, the description of it is as follows:
"Bidirectional Encoder Representations from Transformers is a technique for NLP pre-training developed by Google. BERT was created and
published in 2018 by Jacob Devlin and his colleagues from Google. Google is leveraging BERT to better understand user searches."
The classi�cation problem will be identi�ng whether a tweet is positive or negative.
Enjoy!

Introduction:

Train an Support Vector Classi�er
Use Sklearn to train and tune the SVC
Use SpaCy to tokenize text for the SVC
Fine Tune a Pre-trained BERT Model
Use the huggingface Pytorch library to tune the BERT Model
Compare each model on a holdout dataset of tweets

To identify whether a tweet is positive or negative, we will:

Load the Data from my Github Repository

import pandas as pd
train = pd.read_csv("https://raw.githubusercontent.com/ihr0008/Twitter-BERT/master/dev.tsv", sep ="\t", names = ['id', 'label', 'alph
test = pd.read_csv("https://raw.githubusercontent.com/ihr0008/Twitter-BERT/master/test.tsv", sep ="\t", names =['id', 'label', 'alpha

import numpy as np
tweets = train.tweet.values
labels = train.label.values
labels = np.where(labels==4, 1, labels) # data has 0 & 4 in it, replace 4 with 1 for understanding
test_tweets = test.tweet.values
test_labels = test.label.values
test_labels = np.where(test_labels==4, 1, test_labels) # data has 0 & 4 in it, replace 4 with 1 for understanding

Training the SVC

✔ Download and installation successful
You can now load the model via spacy.load('en_core_web_lg')

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
import spacy
import string
from spacy.lang.en.stop_words import STOP_WORDS
from spacy.lang.en import English
import spacy.cli

Download the Large English NLP Package
print('Be patient, this can take a lil bit...')
#spacy.cli.download("en_core_web_lg")

Load the Large English NLP Package of Spacy
nlp = spacy.load("en_core_web_lg")
print('Large English NLP Package loaded successfully!')

First we have to create a process to tokenize and format our tweets so the SVC can interpret them.

Create our list of punctuation marks
punctuations = string punctuation

https://colab.research.google.com/https://ihr0008.github.io//

punctuations = string.punctuation

Create our list of stopwords
stop_words = spacy.lang.en.stop_words.STOP_WORDS

Load English tokenizer, tagger, parser, NER and word vectors
parser = English()

Tokenizer function
def spacy_tokenizer(sentence):
 # Creating our token object
 mytokens = parser(sentence)

 # Lemmatizing each token and converting each token into lowercase
 mytokens = [word.lemma_.lower().strip() if word.lemma_ != "-PRON-" else word.lower_ for word in mytokens]

 # Removing stop words
 mytokens = [word for word in mytokens if word not in stop_words and word not in punctuations]

 # return preprocessed list of tokens
 return mytokens

Custom transformer using spaCy
class predictors(TransformerMixin):
 def transform(self, X, **transform_params):
 # Cleaning Text
 return [clean_text(text) for text in X]

 def fit(self, X, y=None, **fit_params):
 return self

 def get_params(self, deep=True):
 return {}

Basic function to clean the text
def clean_text(text):
 # Removing spaces and converting text into lowercase
 return text.strip().lower()

To convert the text to vectors, I will include two ways:

Bag-of-Words with N-gram encoding
Tf-Idf (I will use Tf-Idf)

tfidf_vector = TfidfVectorizer(tokenizer = spacy_tokenizer)
bow_vector = CountVectorizer(tokenizer = spacy_tokenizer, ngram_range=(1,1))

Create the Pipeline with the SVC to do the training.

from sklearn.svm import SVC
classifier = SVC(random_state=213)

Create pipeline using Bag of Words
pipe = Pipeline([("cleaner", predictors()),
 ('vectorizer', tfidf_vector),
 ('classifier', classifier)])

Split will be 80/20

Split the data into training and test

Use train_test_split
from sklearn.model_selection import train_test_split

Split tweets
X_train, X_valid, y_train, y_valid = train_test_split(tweets, labels,
 random_state=213, test_size=0.1)

Training of the model and Evaluation

Fit the Model

Pipeline(memory=None,
 steps=[('cleaner', <__main__.predictors object at 0x7f89451ba160>),
 ('vectorizer',
 TfidfVectorizer(analyzer='word', binary=False,
 decode_error='strict',
 dtype=<class 'numpy.float64'>,
 encoding='utf-8', input='content',
 lowercase=True, max_df=1.0, max_features=None,
 min_df=1, ngram_range=(1, 1), norm='l2',
 preprocessor=None, smooth_idf=True,
 stop_wor...
 token_pattern='(?u)\\b\\w\\w+\\b',
 tokenizer=<function spacy_tokenizer at 0x7f885e8a11e0>,
 use_idf=True, vocabulary=None)),
 ('classifier',
 SVC(C=1.0, break_ties=False, cache_size=200, class_weight=None,
 coef0=0.0, decision_function_shape='ovr', degree=3,
 gamma='scale', kernel='rbf', max_iter=-1,
 probability=False, random_state=None, shrinking=True,
 tol=0.001, verbose=False))],
 verbose=False)

model generation
pipe.fit(X_train,y_train)

Predict with the Model

predicted = pipe.predict(X_valid)

Evaluate Model

Look at the Precision, Recall, F1, and Accuracy

 precision recall f1-score support

 0 0.710 0.737 0.723 749
 1 0.756 0.731 0.743 835

 accuracy 0.734 1584
 macro avg 0.733 0.734 0.733 1584
weighted avg 0.734 0.734 0.734 1584

from sklearn import metrics
print(metrics.classification_report(y_valid, predicted, digits=3))

73% accuracy is not bad for a classi�er.

Now Lets look at the Mathews Correlation Coe�cient:

The scale of the MCC is from -1 to 1
-1 is the worst classi�er
+1 is the best classi�er

MCC: 0.467

from sklearn.metrics import matthews_corrcoef
mcc = matthews_corrcoef(y_valid, predicted)

print('MCC: %.3f' % mcc)

A decent MCC, its at least above 0.

Now lets plot the Area Under the Curve (AUC) / ROC Curve

import matplotlib.pyplot as plt

Retrieve the ROC/AUC
fpr, tpr, threshold = metrics.roc_curve(y_valid, predicted)
roc_auc = metrics.auc(fpr, tpr)

Plot the ROC/AUC
plt.title('Receiver Operating Characteristic')

plt.title(Receiver Operating Characteristic)
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

The initial Model with no hyper tuning performed well. The red line represents the equivalent of random guessing. The closer the blue line is to
be a right angle in the top left, the better the classi�er is performing.

Tuning the BERT Model

The �rst step is to identify the GPU we will use perform the training.

The default version of TensorFlow in Colab will soon switch to TensorFlow 2.x.
We recommend you upgrade now or ensure your notebook will continue to use TensorFlow 1.x via the %tensorflow_version 1.x magic: more info.
Found GPU at: /device:GPU:0

import tensorflow as tf

Get the GPU device name.
device_name = tf.test.gpu_device_name()

The device name should look like the following:
if device_name == '/device:GPU:0':
 print('Found GPU at: {}'.format(device_name))
else:
 raise SystemError('GPU device not found')

There are 1 GPU(s) available.
We will use the GPU: Tesla P100-PCIE-16GB

import torch

#Look for GPU
if torch.cuda.is_available():

 # Tell PyTorch to use the GPU.
 device = torch.device("cuda")

 print('There are %d GPU(s) available.' % torch.cuda.device_count())

 print('We will use the GPU:', torch.cuda.get_device_name(0))

else:
 print('No GPU available, using the CPU instead.')
 device = torch.device("cpu")

!pip install transformers

Next we must tokenize the sentences with BERTs Tokenizer

https://www.tensorflow.org/guide/migrate
https://colab.research.google.com/notebooks/tensorflow_version.ipynb

Loading BERT tokenizer...

Downloading 100% 232k/232k [00:00<00:00, 1.24MB/s]

from transformers import BertTokenizer

Load the BERT tokenizer
print('Loading BERT tokenizer...')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)

Lets test the tokenizer on one tweet:

 Original: Writing interrupted by French Open tennis.
Tokenized: ['writing', 'interrupted', 'by', 'french', 'open', 'tennis', '.']
Token IDs: [3015, 7153, 2011, 2413, 2330, 5093, 1012]

Original Tweet:
print(' Original: ', tweets[99])

Split into Tokens:
print('Tokenized: ', tokenizer.tokenize(tweets[99]))

Token ids:
print('Token IDs: ', tokenizer.convert_tokens_to_ids(tokenizer.tokenize(tweets[99])))

First we have to convert the tweets to Token IDs and add the [CLS] and [SEP] tokens that BERT requires.

Original: Writing interrupted by French Open tennis.
Token IDs: [101, 3015, 7153, 2011, 2413, 2330, 5093, 1012, 102]

Tokenize all of the sentences and map the tokens to thier word IDs
tweet_ids = []

for tweet in tweets:

 encoded_tweet = tokenizer.encode(
 tweet, # Sentence to encode.
 add_special_tokens = True, # Add '[CLS]' and '[SEP]
)
 # Add the encoded sentence to the list
 tweet_ids.append(encoded_tweet)

How Tweet and its IDs
print('Original: ', tweets[99])
print('Token IDs:', tweet_ids[99])

Notice the Token IDs are different then above, thats the [CLS] and [SEP] Tokens
Cool stuff ;)

We now have tweets as Token IDs with the special [CLS] and [SEP] Tokens added.

Next we must pad and truncate the tweets so they the same length.

Max tweet length: 125

Lets check the longest Tweet in our dataset
print('Max tweet length: ', max([len(tweet) for tweet in tweet_ids]))

While in our data the maximum is only 125, I think its worth using 280 because that is how long tweets can be.

Use Keras Pad Sequence function
from keras.preprocessing.sequence import pad_sequences

#Set max length of input
MAX_LEN = 284 # I added a few more than 280 just in case

print('\nPadding/truncating all sentences to %d values...' % MAX_LEN)

print('\nPadding token: "{:}", ID: {:}'.format(tokenizer.pad_token, tokenizer.pad_token_id))

Pad our input tokens with value 0
"post" indicates that we want to pad and truncate at the end of the tweet
tweet_ids = pad_sequences(tweet_ids, maxlen=MAX_LEN, dtype="long",
 value=0, truncating="post", padding="post")

i t('\ ')

Padding/truncating all sentences to 284 values...

Padding token: "[PAD]", ID: 0

Done.
Using TensorFlow backend.

print('\nDone.')

Now we have to tell BERT what is padding and what is a word using attention masks.

We can use 0 to refer to padding because BERT doesnt use that token ID

#Attention Masking
attention_masks = []

for tweet in tweet_ids:

 att_mask = [int(token_id > 0) for token_id in tweet]

 attention_masks.append(att_mask)

Now we can split our training data into training and validation (90/10):

Use train_test_split
from sklearn.model_selection import train_test_split

Split tweets
train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(tweet_ids, labels,
 random_state=213, test_size=0.1)
Split masks too
train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels,
 random_state=213, test_size=0.1)

The model needs PyTorch Tensors rather than numpy arrays so we need to convert them.

#Convert to pytorch tensor
train_inputs = torch.tensor(train_inputs)
validation_inputs = torch.tensor(validation_inputs)

train_labels = torch.tensor(train_labels)
validation_labels = torch.tensor(validation_labels)

train_masks = torch.tensor(train_masks)
validation_masks = torch.tensor(validation_masks)

Create an iterator for the data using the torch DataLoader class to save on memory:

from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler

The DataLoader needs to know our batch size for training (16 or 32 is recommended)

batch_size = 32

Create the DataLoader for our training set:
train_data = TensorDataset(train_inputs, train_masks, train_labels)
train_sampler = RandomSampler(train_data) #Random for training data
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)

Create the DataLoader for our validation set:
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)
validation_sampler = SequentialSampler(validation_data) #Sequential for validation data
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)

If you are going to load the model and not train it, run cell below.

from transformers import *
import numpy as np
import time
import datetime
i t d

import random
def flat_accuracy(preds, labels):
 pred_flat = np.argmax(preds, axis=1).flatten()
 labels_flat = labels.flatten()
 return np.sum(pred_flat == labels_flat) / len(labels_flat)

def format_time(elapsed):
 # Takes time in seconds and returns a time string (hh:mm:ss)
 elapsed_rounded = int(round((elapsed)))

 return str(datetime.timedelta(seconds=elapsed_rounded))

We will use huggingface's BertForSequenceClassi�cation model
This will take a while (1 hour for me)
If you have model saved already, do not run this and skip to loading further down

Now we begin the process of tuning our Pre-trained BERT Model.

from transformers import BertForSequenceClassification, AdamW, BertConfig
Initial Model
initial_model = BertForSequenceClassification.from_pretrained(
 "bert-base-uncased", # Use the 12-layer BERT model, with an uncased vocab and base (small) size
 num_labels = 2, # The number of output labels--2 for binary classification (You can increase this for multi-class tasks)
 output_attentions = False, # Whether the model returns attentions weights.
 output_hidden_states = False, # Whether the model returns all hidden-states.
)

Tell pytorch to run this model on the GPU
model.cuda()

We will use a learning rate of 2e-5
For our Optimizer, we will use the AdamW optimizer

We can decide our optimization and learning rates for the model.

Use the AdamW optimizer from huggingface
optimizer = AdamW(model.parameters(),
 lr = 2e-5,
 eps = 1e-8 # a small number to prevent any division by 0
)

from transformers import get_linear_schedule_with_warmup

Number of training epochs (authors recommend between 2 and 4)
epochs = 4

Total number of training steps is number of batches * number of epochs (we chose a batch size of 32 so 32*4)
total_steps = len(train_dataloader) * epochs

Learning rate scheduler
scheduler = get_linear_schedule_with_warmup(optimizer,
 num_warmup_steps = 0,
 num_training_steps = total_steps)

Heres a function to help de�ne accuracy and format time:

import numpy as np
import time
import datetime
import random
def flat_accuracy(preds, labels):
 pred_flat = np.argmax(preds, axis=1).flatten()
 labels_flat = labels.flatten()
 return np.sum(pred_flat == labels_flat) / len(labels_flat)

def format_time(elapsed):
 # Takes time in seconds and returns a time string (hh:mm:ss)
 elapsed_rounded = int(round((elapsed)))

 return str(datetime.timedelta(seconds=elapsed_rounded))

There is a lot going, but most of it is to make it pretty.
I did not write this loop code from scratch, its based on the run_glue.py script

This is the training loop for the model, note:

import random

This training code is based on the `run_glue.py` script here:
https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128

Set the seed value all over the place to make this reproducible.
seed = 213

random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)

Store the average loss after each epoch so we can plot them.
loss_values = []

for each epoch
for epoch_i in range(0, epochs):

 # ==
 # Training
 # ==

 # Perform one full pass over the training set.

 print("")
 print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
 print('Training...')

 # Measure how long the training epoch takes.
 t0 = time.time()

 # Reset the total loss for this epoch.
 total_loss = 0

 # Put the model into training mode. Don't be mislead--the call to
 # `train` just changes the *mode*, it doesn't *perform* the training.
 # `dropout` and `batchnorm` layers behave differently during training
 # vs. test (source: https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch)
 initial_model.train()

 # For each batch of training data
 for step, batch in enumerate(train_dataloader):

 # Progress update every 40 batches.
 if step % 40 == 0 and not step == 0:
 # Calculate elapsed time in minutes.
 elapsed = format_time(time.time() - t0)

 # Report progress.
 print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))

 # Unpack this training batch from our dataloader.
 #
 # As we unpack the batch, we'll also copy each tensor to the GPU using the
 # `to` method.
 #
 # `batch` contains three pytorch tensors:
 # [0]: input ids
 # [1]: attention masks
 # [2]: labels
 b_input_ids = batch[0].to(device)
 b_input_mask = batch[1].to(device)
 b_labels = batch[2].to(device)

 # Always clear any previously calculated gradients before performing a
 # backward pass. PyTorch doesn't do this automatically because
 # accumulating the gradients is "convenient while training RNNs".
 # (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
 initial_model.zero_grad()

P f f d (l t th d l thi t i i b t h)

 # Perform a forward pass (evaluate the model on this training batch).
 # This will return the loss (rather than the model output) because we
 # have provided the `labels`.
 # The documentation for this `model` function is here:
 # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
 outputs = initial_model(b_input_ids,
 token_type_ids=None,
 attention_mask=b_input_mask,
 labels=b_labels)

 # The call to `model` always returns a tuple, so we need to pull the
 # loss value out of the tuple.
 loss = outputs[0]

 # Accumulate the training loss over all of the batches so that we can
 # calculate the average loss at the end. `loss` is a Tensor containing a
 # single value; the `.item()` function just returns the Python value
 # from the tensor.
 total_loss += loss.item()

 # Perform a backward pass to calculate the gradients.
 loss.backward()

 # Clip the norm of the gradients to 1.0.
 # This is to help prevent the "exploding gradients" problem.
 torch.nn.utils.clip_grad_norm_(initial_model.parameters(), 1.0)

 # Update parameters and take a step using the computed gradient.
 # The optimizer dictates the "update rule"--how the parameters are
 # modified based on their gradients, the learning rate, etc.
 optimizer.step()

 # Update the learning rate.
 scheduler.step()

 # Calculate the average loss over the training data.
 avg_train_loss = total_loss / len(train_dataloader)

 # Store the loss value for plotting the learning curve.
 loss_values.append(avg_train_loss)

 print("")
 print(" Average training loss: {0:.2f}".format(avg_train_loss))
 print(" Training epcoh took: {:}".format(format_time(time.time() - t0)))

 # ==
 # Validation
 # ==
 # After the completion of each training epoch, measure our performance on
 # our validation set.

 print("")
 print("Running Validation...")

 t0 = time.time()

 # Put the model in evaluation mode--the dropout layers behave differently
 # during evaluation.
 initial_model.eval()

 # Tracking variables
 eval_loss, eval_accuracy = 0, 0
 nb_eval_steps, nb_eval_examples = 0, 0

 # Evaluate data for one epoch
 for batch in validation_dataloader:

 # Add batch to GPU
 batch = tuple(t.to(device) for t in batch)

 # Unpack the inputs from our dataloader
 b_input_ids, b_input_mask, b_labels = batch

 # Telling the model not to compute or store gradients, saving memory and
 # speeding up validation
 with torch.no_grad():

 # Forward pass, calculate logit predictions.
 # This will return the logits rather than the loss because we have
 # not provided labels.

p
 # token_type_ids is the same as the "segment ids", which
 # differentiates sentence 1 and 2 in 2-sentence tasks.
 # The documentation for this `model` function is here:
 # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
 outputs = initial_model(b_input_ids,
 token_type_ids=None,
 attention_mask=b_input_mask)

 # Get the "logits" output by the model. The "logits" are the output
 # values prior to applying an activation function like the softmax.
 logits = outputs[0]

 # Move logits and labels to CPU
 logits = logits.detach().cpu().numpy()
 label_ids = b_labels.to('cpu').numpy()

 # Calculate the accuracy for this batch of test sentences.
 tmp_eval_accuracy = flat_accuracy(logits, label_ids)

 # Accumulate the total accuracy.
 eval_accuracy += tmp_eval_accuracy

 # Track the number of batches
 nb_eval_steps += 1

 # Report the final accuracy for this validation run.
 print(" Accuracy: {0:.2f}".format(eval_accuracy/nb_eval_steps))
 print(" Validation took: {:}".format(format_time(time.time() - t0)))

print("")
print("Training complete!")

======== Epoch 1 / 4 ========
Training...
 Batch 40 of 446. Elapsed: 0:01:04.
 Batch 80 of 446. Elapsed: 0:02:12.
 Batch 120 of 446. Elapsed: 0:03:19.
 Batch 160 of 446. Elapsed: 0:04:26.
 Batch 200 of 446. Elapsed: 0:05:34.
 Batch 240 of 446. Elapsed: 0:06:41.
 Batch 280 of 446. Elapsed: 0:07:48.
 Batch 320 of 446. Elapsed: 0:08:56.
 Batch 360 of 446. Elapsed: 0:10:03.
 Batch 400 of 446. Elapsed: 0:11:10.
 Batch 440 of 446. Elapsed: 0:12:18.

 Average training loss: 0.46
 Training epcoh took: 0:12:27

Running Validation...
 Accuracy: 0.80
 Validation took: 0:00:31

======== Epoch 2 / 4 ========
Training...
 Batch 40 of 446. Elapsed: 0:01:07.
 Batch 80 of 446. Elapsed: 0:02:15.
 Batch 120 of 446. Elapsed: 0:03:22.
 Batch 160 of 446. Elapsed: 0:04:29.
 Batch 200 of 446. Elapsed: 0:05:37.
 Batch 240 of 446. Elapsed: 0:06:44.
 Batch 280 of 446. Elapsed: 0:07:51.
 Batch 320 of 446. Elapsed: 0:08:58.
 Batch 360 of 446. Elapsed: 0:10:06.
 Batch 400 of 446. Elapsed: 0:11:13.
 Batch 440 of 446. Elapsed: 0:12:20.

 Average training loss: 0.31
 Training epcoh took: 0:12:30

Running Validation...
 Accuracy: 0.83
 Validation took: 0:00:31

======== Epoch 3 / 4 ========
Training...
 Batch 40 of 446. Elapsed: 0:01:07.
 Batch 80 of 446. Elapsed: 0:02:15.
 Batch 120 of 446. Elapsed: 0:03:22.
 Batch 160 of 446. Elapsed: 0:04:29.
 Batch 200 of 446. Elapsed: 0:05:36.
 Batch 240 of 446. Elapsed: 0:06:44.
 Batch 280 of 446. Elapsed: 0:07:51.
 Batch 320 of 446. Elapsed: 0:08:58.
 Batch 360 of 446. Elapsed: 0:10:06.
 Batch 400 of 446. Elapsed: 0:11:13.
 Batch 440 of 446. Elapsed: 0:12:20.

 Average training loss: 0.20
 Training epcoh took: 0:12:30

Running Validation...
 Accuracy: 0.82
 Validation took: 0:00:31

======== Epoch 4 / 4 ========
Training...
 Batch 40 of 446. Elapsed: 0:01:07.
 Batch 80 of 446. Elapsed: 0:02:15.
 Batch 120 of 446. Elapsed: 0:03:22.
 Batch 160 of 446. Elapsed: 0:04:29.
 Batch 200 of 446. Elapsed: 0:05:37.
 Batch 240 of 446. Elapsed: 0:06:44.
 Batch 280 of 446. Elapsed: 0:07:51.
 Batch 320 of 446. Elapsed: 0:08:58.
 Batch 360 of 446. Elapsed: 0:10:06.
 Batch 400 of 446. Elapsed: 0:11:13.
 Batch 440 of 446. Elapsed: 0:12:20.

 Average training loss: 0.13
 Training epcoh took: 0:12:30

Running Validation...
 Accuracy: 0.83
 Validation took: 0:00:32

Training complete!

Code imported from run_glue.py

Save the Model:

Saving model to ./model_save/
('./model_save/vocab.txt',
 './model_save/special_tokens_map.json',
 './model_save/added_tokens.json')

import os

Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()

output_dir = './model_save/'

Create output directory if needed
if not os.path.exists(output_dir):
 os.makedirs(output_dir)

print("Saving model to %s" % output_dir)

Save a trained model, configuration and tokenizer using `save_pretrained()`.
They can then be reloaded using `from_pretrained()`
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)

Good practice: save your training arguments together with the trained model
#torch.save(args, os.path.join(output_dir, 'training_args.bin'))

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.a

Enter your authorization code:
··········
Mounted at /content/drive

#Save to Google drive
from google.colab import drive
drive.mount('/content/drive')

!cp -r ./model_save/ "./drive/My Drive/Saved Models/"

Predictions and Evaluation from the Tuned BERT model

Process Holdout Data

Test data is test_tweets and test_labels

input_ids = []

for tweet in test_tweets:
 encoded_tweet = tokenizer.encode(
 tweet,
 add_special_tokens = True, # Add '[CLS]' and '[SEP]'
)

 input_ids.append(encoded_tweet)

Same Max Length as above - 284
MAX_LEN = 284

Pad our input tokens
input_ids = pad_sequences(input_ids, maxlen=MAX_LEN,
 dtype="long", truncating="post", padding="post")

Create attention masks
attention_masks = []

Create a mask of 1s for each token followed by 0s for padding
for seq in input_ids:
 seq_mask = [float(i>0) for i in seq]
 attention_masks.append(seq_mask)

https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly

Convert to tensors.
prediction_inputs = torch.tensor(input_ids)
prediction_masks = torch.tensor(attention_masks)
prediction_labels = torch.tensor(test_labels)

Set the batch size.
batch_size = 32

Create the DataLoader.
prediction_data = TensorDataset(prediction_inputs, prediction_masks, prediction_labels)
prediction_sampler = SequentialSampler(prediction_data)
prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)

Load the Model from Google Drive (so we dont have to retrain)

from torch import nn

model_dir = "./drive/My Drive/Saved Models/model_save/"

model = BertForSequenceClassification.from_pretrained(model_dir)
tokenizer = BertTokenizer.from_pretrained(model_dir)

Copy the model to the GPU.
model.to(device)

Getting Predictions

Predicting labels for 15,682 test tweets...
Done!

print('Predicting labels for {:,} test tweets...'.format(len(prediction_inputs)))

Put model in evaluation mode
model.eval()

Tracking variables
predictions , true_labels = [], []

Predict
for batch in prediction_dataloader:
 # Add batch to GPU
 batch = tuple(t.to(device) for t in batch)

 # Unpack the inputs from our dataloader
 b_input_ids, b_input_mask, b_labels = batch

 # Telling the model not to compute or store gradients, saving memory and
 # speeding up prediction
 with torch.no_grad():
 # Forward pass, calculate logit predictions
 outputs = model(b_input_ids, token_type_ids=None,
 attention_mask=b_input_mask)

 logits = outputs[0]

 # Move logits and labels to CPU
 logits = logits.detach().cpu().numpy()
 label_ids = b_labels.to('cpu').numpy()

 # Store predictions and true labels
 predictions.append(logits)
 true_labels.append(label_ids)

print('Done!')

taking predictions from the BERT is a bit tricky because the output in this case is the logit prediction of the texts semantic meaning
we have to convert all of it to one array of predictions

Evaluate BERT Model

Combine the predictions for each batch into a single list of 0 and 1 preds
fl t di ti [it f bli t i di ti f it i bli t]

flat_predictions = [item for sublist in predictions for item in sublist]
flat_predictions = np.argmax(flat_predictions, axis=1).flatten()

Combine the correct labels for each batch into a single list
flat_true_labels = [item for sublist in true_labels for item in sublist]

Lets look at the Precision, Recall, F1, and Accuracy Report

 precision recall f1-score support

 0 0.831 0.831 0.831 7862
 1 0.830 0.830 0.830 7820

 accuracy 0.830 15682
 macro avg 0.830 0.830 0.830 15682
weighted avg 0.830 0.830 0.830 15682

from sklearn import metrics
print(metrics.classification_report(flat_true_labels, flat_predictions, digits=3))

83%! Thats around 10% better than the SVC we trained. The model is around 20% better than the SVC at predicting the semantic labels when
compared to random (50%).

Lets Look at the Matthews Correlation Coe�cient now

MCC: 0.661

from sklearn.metrics import matthews_corrcoef

Calculate the MCC
mcc = matthews_corrcoef(flat_true_labels, flat_predictions)

print('MCC: %.3f' % mcc)

0.661 is pretty good, up from .467 with the SVC

Now we can plot the Area Under the Curve (AUC) / ROC Curve.

import matplotlib.pyplot as plt

Retrieve the ROC/AUC
fpr, tpr, threshold = metrics.roc_curve(flat_true_labels, flat_predictions)
roc_auc = metrics.auc(fpr, tpr)

Plot the ROC/AUC
plt.title('Receiver Operating Characteristic')
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc)
plt.legend(loc = 'lower right')
plt.plot([0, 1], [0, 1],'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()

Thats a pretty nice looking ROC Curve, right there! Especially considering the model was only trained on 15000 tweets.

Conclusion and Insights

The SVC performed well and could have performed better if I spent a good amount of time hyper tuning the parameters.
The BERT model is the base/small version and it could have been tuned a little more if I had the time and knowledge to do so.
I am by no means an expert in using BERT for NLP, rather I am a data science student with signi�cant room to improve.
I used various online and academic resources to build this project and was by no means done on my own.

Heres a few considerations before I draw insights:

For example, the Kaggle Competition winner for semantic analysis of tweets achieved a validation score of 87.66% (albeit 3 years ago).
As well, they trained on 2.5 million tweets, compared to our 15000.
Considering that, I hope you begin to realize the power of transfer learning combined with the state-of-the-art models.

Comparatively, our predictions are incredibly accurate for only training on 15000 tweets.

Most non-neural net models are pretty good when being trained on lower amounts of training data (less than 100,000 maybe) when
compared to neural nets (which require a lot of data to really get good, but scale much better with more information).
Because of taking a pre-trained model and tuning only the top layer or neurons on this speci�c task, we can use the power of neural nets
with limited amounts of data.
Transfer learning helps avoid the Cold-start problem that comes with neural nets, meaning we dont have to spend enourmous amounts of
time and moeny to train a top of the line neural net from scratch.

This project really highlights the power of Transfer learning for several reasons:

All you need is a pretrained model and you can implement it on limited data problems.
This can help companies without a history of data collection or within new industries utilize the best machine learning algorithms like
never before.

By using transfer learning, people and companies can utilize state-of-the-art deep learning models to make
predictions without having to obtain enourmous amounts of data to train them.

All that being said, the more we train this model the better it will do! That takes time and money I do not have as a
graduate student (at the time of this writing).

Thank you!

https://www.kaggle.com/c/epfml-text/leaderboard

